İŞİN ADI:

Grafik Tabanlı Simülasy	on
-------------------------	----

AMAÇ: Grafik menüsünü kullanarak grafik tabanlı devre yapımını öğrenme.

TEORİK BİLGİ: Proteus İSİS programında bir devrenin analizi için grafiğini çizdirebiliriz. **"Graph"** menüsünde bulunan komutlarla çizilen grafikle ilgili olarak;

- ✓ Grafik izleme noktası ekleyebilir,
- Veri değişikliğinde grafiği tekrar çizdirebilir,
- ✓ Grafikle ilgili bilgiler toplayabilir,
- ✓ Grafiğin matematiksel verilerini bir dosyaya kayıt edebilir,
- Grafiğe ait verileri silebilir,
- ✓ Grafiklerin uygunluk analizini kontrol edebilir,
- ✓ Daha önce oluşturulan grafikle yeni grafiği karşılaştırabiliriz.

<u>UYGULAMA 1:</u> DİJİTAL GRAFİK OLUŞTURMAK

<u>İŞLEM BASAMAKLARI:</u>

- 1. İSİS programında yeni bir çalışma sayfası açınız.
- 2. Dosyanızı bilgisayarın masaüstü bölümüne okul no-sınıf (örneğin; 1234-11B.DSN) şeklinde kaydediniz.
- 3. Aşağıdaki elemanları kullanıcı kütüphanesine alınız.

ELEMAN	KEYWORDS	KÜTÜPHANE	P L DEVICES
DT Flip-Flop	DTFF	Similator Primitives \Rightarrow Flip-Flops \Rightarrow DTFF	DTFF

DPATTERN	\bigcirc Generator Mode ⇒ DPATTERN
CLOCK PALS	\bigcirc Generator Mode ⇒ DCLOCK
VOLTAJ PROBU	Voltaj Probe Mode

4. Çağrılan elemanları tasarım alanına şekildeki gibi alınız ve ara bağlantıları yapınız.

5. "DPATTERN" ayar penceresini açınız ve "Bit Pattern" bölümüne 1 ve 0 değerlerini rastgele veriniz. (Örneğin; 11011100111100 gibi.)

_	Bit Pattern	
1	Standard High-Low Pulse Train	
۴	Specific pulse train:	
	110110001111100	

- 6. Grafik oluşturmak için "Gadgets" araç çubuklarından "Graph Mode 🔛 " butonuna tıklayınız. Açılan pencereden "DIGITAL" grafiğini seçiniz. Farenin sol tuşunu kullanarak grafik ekranı oluşturunuz.
- 7. "Graph \Rightarrow Edit graph" komutuna tıklayıp "Stop Time" değerini "10" yapın.
- "Graph ⇒ Add Trace" komutuna tıklayın. Açılan pencereden "Probe P1" kısmından "D" yi seçerek "Ok" butonuna tıklayıp pencereyi kapatın. Aynı işlemi D(CLK), U1(Q) ve U1(Q^I) için de yapınız.
- 9. Grafiğin son halini görmek için "**Graph** \Rightarrow **Simulate Graph**" komutuna tıklayın.

	3	1		
23 14	a a	a 31	8 6	12
		and a literation of the	a a constanti da constanti da ser esta esta esta esta esta esta esta esta	u u u u u u u da u u

<u>UYGULAMA 2:</u> ANALOG GRAFİK OLUŞTURMAK <u>İŞLEM BASAMAKLARI:</u>

1. Aşağıdaki elemanları kullanıcı kütüphanesine alınız.

ELEMAN	KEYWORDS	KÜTÜPHANE	
OPAMP	OPAMP	Operational Amplifiers \Rightarrow İdeal \Rightarrow OPAMP	MINBES10K
DİRENÇ	MINRES10K	Resistors \Rightarrow 0.6W Metal Film \Rightarrow MINRES10K	MINRES20K
DİRENÇ	MINRES20K	Resistors \Rightarrow 0.6W Metal Film \Rightarrow MINRES20K	TOLYWIL

GÜÇ KAYNAĞI	\bigcirc Generator Mode ⇒ SINE
VOLTAJ PROBU	Voltaj Probe Mode

2. Çağrılan elemanları tasarım alanına şekildeki gibi alınız ve ara bağlantıları yapınız.

3. Giriş gerilimi için kullanılan "SINE" elemanı ayarlarını; adı "Vg" frekansını "10Hz" olacak şekilde yapınız.

- Grafik oluşturmak için "Gadgets" araç çubuklarından "Graph Mode X " butonuna tıklayınız. Açılan pencereden "ANALOGUE" grafiğini seçiniz. Farenin sol tuşunu kullanarak grafik ekranı oluşturunuz.
- 5. "Graph ⇒ Edit graph" komutuna tıklayıp "Stop Time" değerini "500m" yapın.
- "Graph ⇒ Add Trace" komutuna tıklayın. Açılan pencereden "Probe P1" kısmından "Vg" yi seçerek "Ok" butonuna tıklayıp pencereyi kapatın. Aynı işlemi "Vc" için de yapınız.
- 7. Grafiğin son halini görmek için "Graph ⇒ Simulate Graph" komutuna tıklayın.

8. $Vc = -\left(\frac{R_2}{R_1}\right) \cdot Vg$ formülüne göre grafik yorumunuzu uygulama sonundaki cevaplar bölümüne yazınız.

<u>UYGULAMA 3:</u> FREKANS RESPONSU-BGF GRAFİĞİ OLUŞTURMAK <u>İŞLEM BASAMAKLARI:</u>

1. Aşağıdaki elemanları kullanıcı kütüphanesine alınız.

ELEMAN	KEYWORDS	KÜTÜPHANE	
OPAMP	OPAMP	Operational Amplifiers \Rightarrow İdeal \Rightarrow OPAMP	P L DEVICES
DİRENÇ	MINRES1K	Resistors \Rightarrow 0.6W Metal Film \Rightarrow MINRES1K	CAP MINBES1K
DİRENÇ	MINRES10K	Resistors \Rightarrow 0.6W Metal Film \Rightarrow MINRES10K	MINRES5K6
DİRENÇ	MINRES5K6	Resistors \Rightarrow 0.6W Metal Film \Rightarrow MINRES5K6	OPAMP
KONDANSATÖR	CAPACITOR	Capacitors \Rightarrow Generic \Rightarrow CAP	

GÜÇ KAYNAĞI	\bigcirc Generator Mode ⇒ SINE
VOLTAJ PROBU	Voltaj Probe Mode

2. Çağrılan elemanları tasarım alanına şekildeki gibi alınız ve ara bağlantıları yapınız.

3. Giriş gerilimi için kullanılan "SINE" elemanı ayarlarını; adı "Vg", Amplitude değerini "10V" ve frekansını "1MHz" olacak şekilde yapınız.

Generator Name:	Amplitude (Volts):		
Vg	🐟 Amplitude:	10	

- 4. Grafik oluşturmak için "**Gadgets**" araç çubuklarından "**Graph Mode** 🔛 " butonuna tıklayınız. Açılan pencereden "**FREQUENCY**" grafiğini seçiniz. Farenin sol tuşunu kullanarak grafik ekranı oluşturunuz.
- "Graph ⇒ Add Trace" komutuna tıklayın. Açılan pencereden "Probe P1" kısmından "Vg" yi seçerek "Ok" butonuna tıklayıp pencereyi kapatın. Aynı işlemi "Vc" için de yapınız.
- 6. "Graph ⇒ Edit graph" komutuna tıklayın, açılan pencerede ayarları aşağıdaki şekildeki gibi yapın.

Graph <u>t</u> itle:	FREQUENCY RESPONSE
<u>R</u> eference:	Vg 💌
Start frequency:	1
Stop frequency:	1M
<u>I</u> nterval:	DECADES 💌
<u>N</u> o. Steps/Interval:	10

7. Grafiğin son halini görmek için "Graph ⇒ Simulate Graph" komutuna tıklayın.

SORULAR:

- 1. Devreleri bilgisayarın masaüstü bölümüne **okul no-sınıf (örneğin; 1234-11B)**, Zoom to Area komutuyla ekranı kaplayacak şekilde bitmap resim formatında kaydediniz. Kaydetme işlemini yaptığınız menü ve komutları yazınız.
- 2. Uygulama-2 grafik yorumu.

ÖĞRENCİNİN		DEĞERLENDİRME		
ADI SOYADI:		Elemanların doğru olarak seçilmesi	15	
SINIF ve NO:		İşlem basamaklarının doğru olarak uygulanması		
ÖĞRETMEN	İMZA	Grafik1'in doğru olarak çizilmesi	5	
		Grafik2'nin doğru olarak çizilmesi	5	
		Grafik3'ün doğru olarak çizilmesi	5	
		Soruların doğru olarak cevaplanması	15	
		İş alışkanlıkları	15	
		İşin zamanında bitirilmesi	10	
		Devrelerin doğru çalışması	30	
		TOPLAM	100	100